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Abstract 

In this study, static analysis of Piezoelectric/Piezomagnetic materials, anisotropic and linear magneto-
electro-thermo-elastic strip have been carried out by finite element method. The finite element model is derived 
based on constitutive equation of Piezoelectric and Piezomagnetic material accounting for coupling between 
elasticity, thermal, electric and magnetic effect. The present finite element is modeled with displacement 
components, electric potential and magnetic potential as nodal degree of freedom. The other fields are calculated by 
post-computation through constitutive equation. Numerical study includes the influence of the effect of stacking 
sequences on displacement, electrical potential and magnetic field under mechanical and thermal loading. In 
addition further study has been carried out on effect of pyroelectric, pyromagnetic coupling involved in materials 
under thermal loading.      
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Introduction 
 In recent years, intelligent or smart structures 
have become a new research field. These Piezomagnetic 
and piezoelectric materials have the ability to convert 
energy from one form, such as magnetic, electric, 
mechanical and thermal, to another. The intelligent or 
smart structures made of Piezomagnetic and piezoelectric 
materials exhibit the magneto-electro-thermo-elastic 
coupling effect by Harshe, Nan and Benveniste [1–3]. 
This effect is not present in the single Piezomagnetic or 
piezoelectric material. The coupling that exists between 
the thermoelastic and electric fields in piezoelectric 
materials provides a means for sensing 
thermomechanical disturbances from the measurements 
of induced electrical potential and magnetic induction. 
The magneto-electro-thermo-elastic coupling effect has 
considerable applications in the fields of sensors, 
transducers and the control of structural vibration.  
One of the basic elements of these intelligent composite 
materials are laminated Piezoelectric/Piezomagnetic 
structures, and these structures are often operated in 
mechanical and thermal loading. Therefore, analytical 
studies concerned with piezothermoelasticity of these 
structures were developed by Tauchert and Ashida [4]. 
On the other hand, one of cause of damage in these 
laminated structures includes delamination. In order to 
evaluate this phenomenon, it is necessary to consider the 
transverse shearing stresses and the normal stress in the 
thickness direction. From the above concept, several 

exact solutions for the two-dimensional or three-
dimensional piezothermoelastic problems of laminated 
composite plates were obtained by Xu et al. [5], Tauchert 
[6], Shang et al. [7], Kapuria et al. [8], and Tauchert and 
Ashida [4]. Pan [9] derived the exact solution for 
multilayered electro-magneto-elastic plates using a 
propagator matrix.   

Exact solutions have been obtained by many 
researchers in studies of the piezothermoelastic problem 
subjected to steady-state temperature distribution [10, 
11]. The piezothermoelastic behavior of distributed 
sensors and actuators subjected to a steady-state 
temperature field was investigated by Tzou and Ye [12]. 
Sunar et al [13] derived the linear constitutive equations 
of thermopiezomagnetism with the aid of a 
thermodynamic potential and a variational approach of 
obtaining general coupled field equations for 
thermopiezomagnetic composites. Ding and Jiang [14] 
carried out analytical solutions to two-dimensional 
magnetoelectro-elastic media in terms of four harmonic 
displacement functions. Ding et al [15] derived the two-
dimensional Green’s functions for two-phase 
transversely isotropic magneto-electro elastic media. 
Ootao and Tanigawa [16] investigated the behavior of a 
multilayered magneto-electro-thermo-elastic strip due to 
non-uniform heat supply. 
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Fig.1: Geometrical model with mechanical boundary 

conditions 

 
Fig.2: Geometrical model with thermal boundary 

conditions 
Based on a literature survey, it is found that a 

limited number of studies have investigated magneto-
electro-elastic strips in a mechanical and thermal loading. 
In this paper, we present the numerical solution for a 
three-layered magneto-electroelastic strip made of 
piezoelectric BaTiO3 and Piezomagnetic CoFe2O4 
materials. Pyroelectricity is another interesting of a cross 
property by Newnham et al [17]. Application of heat to 
composite results in thermal expansion and in turn to 
electric polarization when the mechanical strain is 
transferred to the piezoelectric phase. Even if the 
individual constituents of the composite do exhibit 
intrinsic pyroelectricity, the secondary product effect 
produced due to coupling of the different phases can 
make a significant contribution by Newnham et al [17]. 
Nan et al [18] represent product properties in composites 
in the following manner. 

Magnetoelectric = 
Electric

Mechanical
x

Mechanical

Magnetic
 

Pyroelectric = 
Electric

Mechanical
x

Mechanical

Thermal
 

Pyromagnetic = 
Magnetic

Mechanical
x

Mechanical

Thermal  

 
The main aim is to study the influence of 

Piezoelectric/Piezomagnetic and 
Pyroelectric/Pyromagnetic constants on displacement, 
electric potential and magnetic potential static 
mechanical and thermal loading conditions. 

Finite Element Formulation 
Mechanical loading  

For mechanical loading one end is fixed and 
other end is free condition. The layerwise mechanical 
loading condition is evaluated by solving the two-
dimensional rectangular elements. The finite element 
matrix equation  
[���]��� = ���     (1) 
Where, [���],��� 
�� ��� are the element matrix, 
displacement and force respectively. 
Where the different stiffness matrices mentioned in the 
above equation are defined as. [���� ] = � [��]�[�][��]���  ; ��� � = � [��]�[�] ���   (2) 
Where, [��] is derivative of the shape function matrix for 
strain displacement, [�] are the elastic constant matrix. 

 
Fig.3: Discretization of Finite Element Model with Four 

Noded Elements 
Coupled magneto – electro – elastic problem  

The coupled constitutive equations for 
anisotropic and linearly magneto-electro-elastic solids 
can be written as  �� = ����� − ����� − �����  �� = ����� +  ���� + !����  (3) �� = ����� + !���� + "����  
Where σi, Di, and Bi are the components of stress, electric 
displacement and magnetic induction, respectively. cik, 
ηik and µik are the elastic, dielectric and magnetic 
permeability coefficients, respectively. eki, qki and mik are 
the piezoelectric, piezomagnetic and magneto-electric 
material coefficients respectively. Ek, Hk, are electric 
field, magnetic field, respectively. In the present 
analysis, the coupled three-dimensional constitutive 
equations (3) for a magneto-electro-elastic solid in the 
x1-x2 plane are assumed to be isotropic. The constitutive 
equations can be written in matrix form as 
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     (4) 
Where σ1 = σx1, σ2 = σx2, σ3 = σx3, σ4 = τx2x3, σ5 =τx1x3, σ6 = 
τx1x2 , D1 = Dx1, D2 = Dx2, D3 = Dx3, B1 =Bx1, B2 = Bx2 and 
B3 = Bx3. For plane stress problems, stress components σ2 
= σ4 = σ6 = 0, electric displacement D2 = 0 and magnetic 
induction B2 = 0 with thickness assumed as unity. The 
coefficients cik, ηik,, µik , eki , qki and mik are  strain 
displacement, electric field–electric potential and 
magnetic field–magnetic potential equations are used in 
the finite element analysis along with the constitutive 
equations. The strains Sij are related to displacement ui 
and can be written as 

Sij = ½ (ui,j+uj,i)    (5) 
The electric field Ei and magnetic field Hi are 

related to the electric potential φ and magnetic potential 
ψ, and can be written as 

Ei = −φ,i ; Hi = −ψ,i   (6) 
[���]��� + 4��56�7� + 4��86�9� = ��� [��5]���� −  4�556�7� − 4�586�9� = 0   (7) [��8]���� −  4�586�7� − 4�886�9� = 0  
Where the different stiffness matrices mentioned in the 
above equations are defined as. [���� ] = � [��]�[�][��]���   [��8� ] = � [��]�[�]4�86���   [��5� ] = � [��]�[�]4�56���   [�58� ] = � [�5]�[!]4�86���     (8) [�55� ] = � [�5]�[ ]4�56���   [�88� ] = � [�8]�["]4�86���   ��� � = � [��]�[�]���   
 
where {α} = { α1 α3 0 }T. [Bu ], [Bφ] and [Bψ] are 
derivatives of the shape function matrix for strain 
displacement, electric field potential and magnetic field 
potential, respectively. [c], [q], [e], [m], [ε] , [µ], [λ], and 
[η] are the reduced elastic constant matrix, 
piezomagnetic coefficient matrix, piezoelectric 
coefficient matrix, magneto-electric coefficient matrix, 
dielectric coefficient matrix, magnetic permeability 
matrix, pyroelectric coefficient matrix and pyromagnetic 
coefficient matrix respectively. The shape function 
matrix used in equation (8) can be written with respect to 
the four nodded rectangular elements as 
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 (10) 
The electric potential 7 and magnetic potential 

ψ are eliminated from equation (7) by standard 
condensation techniques. The derived stiffness matrix 
[Keq] is used to solve the Eigen vectors 4��D6��� = ���    
 (11) 
Where 4��D6 = [���] + 4��56[�EE]F&[�E] + 4��86[�EG]F&[�EEE]
                
 (12) 
The component matrices in equation (12) are 



[Balu, 3(2): February, 2014]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[678-685] 

 

[�E] = [��5]� − 4�586[�88]F&[��8]� 
 (13) [�EE] = [�55] − 4�586[�88]F&[�58]� 
 (14) [�EEE] = [��8]� − [�88]�[�55]F&[��5]� 
 (15) [�EG] = [�88] − [�58]�[�55]F&[�58]� 
 (16) 

The electric potential 7 and magnetic potential 
ψ can be computed as 
 7 = [�EE]F&[�E]���   
 (17) 9 = [�EG]F&[�EEE]���   
 (18) 
 

In the present analysis, the four point Gaussian 
integration scheme has been implemented to evaluate the 
integrals involved in different matrices. The coupled 
stiffness matrix of the system has been inverted to obtain 
the displacements. The coupling between electric and 
magnetic fields is neglected. The problem has been 
solved to obtain the electric and magnetic potential based 
on the effect of electroelastic coupling and magneto-
elastic coupling.   
 
Thermal Distribution 

Uniform temperature distribution of an electro-
magneto-elastic strip is assumed as shown in Fig.2. The 
temperature of the strip is 50oC. The layerwise 
temperature distribution is evaluated by solving the 
steady-state two dimensional Fourier heat conduction 
equation using two-dimensional rectangular elements. ;��;H = I>� ;@��;@>@ + IJ� ;@��;@J@ ; i=1,2,….,n         (19) 

Where the Ti is the temperature change of the i th layer; 
kxi and kzi are thermal diffusivities in the x and z 
directions, respectively. 
The finite element form of Fourier heat conduction leads 
to the following elemental matrix equation 
[[�&�] + [�'�]]�3�� = �K��   (20) 
Where [�&�], [�'�], �3�� 
�� �K�� are the element 
conduction matrix, convection matrix, load vector due to 
convection and element nodal temperature vector, 
respectively. The temperature distribution within the 
domain is evaluated by solving equation (20).   
Coupled magneto – electro – thermo – elastic problem  

The coupled constitutive equations for 
anisotropic and linearly magneto-electro-elastic solids 
can be written as  

σM = cMOPSO − αOR − eOMEO − qOMHO  DM = eMOSO + ηMOEO + mMOHO + ξMT 
 (21) 

BM = qMOSO + mMOEO + µMOHO + ωMT  
Where σi,Di,and Bi are the components of stress, 

electric displacement and magnetic induction, 
respectively. cik, ηik, µik, ξM, and ωM  are the elastic, 
dielectric, magnetic permeability, pyroelectric and 
pyromagnetic coefficients, respectively. eki, qki and mik 

are the piezoelectric, piezomagnetic and magneto-electric 
material coefficients respectively. Ek, Hk, αk and T are 
electric field, magnetic field, thermal expansion 
coefficient and small temperature difference, 
respectively. In the present analysis, the coupled three-
dimensional constitutive equations (21) for a magneto-
electro-elastic solid in the x1-x2 plane are assumed to be 
isotropic. The constitutive equations can be written in 
matrix form as (4) 
The thermodynamic potential G can be written as G =  &'  SO\cMOSO − &' E]\ηMOEO − &' H]\µMOHO −  S]\eOMEO −S]\qOMHO − H]\mMOEO − S]\βOMθO  
 (22) 
Where βki is the stress–temperature coefficient. The strip 
is discretized using four nodded elements having four 
nodal degrees of freedom viz thermal displacement in the 
x1 and x3 directions, and electric and magnetic potentials. 
It can be represented by suitable shape functions, such as  
ui = [Nu ]{u}; ϕ = [Nϕ] {ϕ�; ψ = [Nψ ]{ψ}  
 (23) 
where {u} = {u1 u3 }

T, u1 and u3 are displacements in the 
x1 and x3 directions, respectively. Substituting equations 
(20), (5), (6), and (23) into (22), we get the following 
coupled finite element equations (after assembling the 
elemental matrices) 
[Kaa]�u� + 4Kaϕ6�ϕ� + 4Kaψ6�ψ� = �Fde� [Kaϕ]\�u� −  4Kϕϕ6�ϕ� − 4Kϕψ6�ψ� = 0  
 (24) [Kaψ]\�u� −  4Kϕψ6�ϕ� − 4Kψψ6�ψ� = 0  
Where the different stiffness matrices mentioned in the 
above equations are defined as (8) and (25) �Fdef � = � [Ba]\[c][α]θdvi     (25) 
 
where {α} = { α1 α3 0 }T. [Bu ], [Bφ] and [Bψ] are 
derivatives of the shape function matrix for strain 
displacement, electric field potential and magnetic field 
potential, respectively. [c], [q], [e], [m], [η] and [µ] are 
the elastic constant matrix, piezomagnetic coefficient 
matrix, piezoelectric coefficient matrix, magneto-electric 
coefficient matrix, dielectric coefficient matrix and 
magnetic permeability matrix, respectively. The shape 
function matrix used in equation (8) and (25) can be 
written with respect to the four nodded rectangular 
elements as (9) and (10). 
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The electric potential ϕ and magnetic potential 
ψ are eliminated from equation (8) by standard 
condensation techniques. The derived stiffness matrix 
[K eq] is used to solve the Eigen vectors 4Kfj6�u� = �Fde�      
(26) 
Where 4Kfj6 in (12) 
The component matrices in equation (12) are (13) to 
(16). 
The electric potential ϕ and magnetic potential ψ can be 
computed as (17) and (18). 

In the present analysis, the four point Gaussian 
integration scheme has been implemented to evaluate the 
integrals involved in different matrices. The coupled 
stiffness matrix of the system has been inverted to obtain 
the thermal displacements. The coupling between electric 
and magnetic fields is neglected. The problem has been 
solved to obtain the electric and magnetic potential based 
on the effect of electroelastic coupling and magneto-
elastic coupling.    
 
Results and Discussion 

A three-layered electro-magneto-elastic strip 
made of piezoelectric (BaTiO3) and piezomagnetic 
(CoFe2O4) materials with each having equal thickness. 
The piezoelectric BaTiO3 and piezomagnetic CoFe2O4 
are both transversely isotropic with their symmetry axis 
along the x3 axis. The material coefficients for 
piezoelectric (BaTiO3) and piezomagnetic (CoFe2O4) 
materials are listed in Table.1: One stacking sequence, 
BaTiO3/BaTiO3/BaTiO3 (named B/B/B) is investigated. 
Further we will investigate BaTiO3/ CoFe2O4/ BaTiO3 
(named B/F/B) and CoFe2O4/BaTiO3/CoFe2O4 (named 
F/B/F). The length of the composite strip (L) = 0.06 m 
and the thickness (B) = 0.01 m. The discretization of the 
finite element model is shown in Fig. 3: for thermal and 
structural analysis.  

A both ends are fixed multilayered composite 
strip constructed magneto-electro-thermo elastic 
materials subjected to a uniform heat supply in the width 
direction has been investigated.  
Table.1: Material properties for piezoelectric (BaTiO3) and 

piezomagnetic (CoFe2O4) materials 
Parameter BaTiO3 CoFe2O4 
Elastic constants    
C11=C22 (GPa) 166.0 286.0 
C12 77.0 173.0 
C13=C23 78.0 170.5 
C33 162.0 269.0 
C44=C55 43.0 45.3 
C66 44.5 56.5 
Piezoelectric constants    
e31 = e32 (C m-2) -4.4 0.0 

e33 18.6 0.0 
e15 11.6 0.0 
Piezomagnetic constants    
q31 = q31 (N A-1 m-2) 0.0 583.0 
q33 0.0 699.7 
q15 0.0 550.0 
Dielectric constant   
η11=η22 (10-9 C2 N-1 m-2) 11.2 0.08 
η33 12.6 0.093 
Magnetic permeability 
constants  

  

µ11=µ22 (10-6 N s2 C-2) 5.0 -590.0 
µ33 10.0 157.0 
Thermal expansion 
coefficients  

  

α1=α2 (10-6 K-1) 15.7 10.0 
α3 6.4 10.0 
Magnetoelectric constants    
m11=m22 (N s V-1 C-1) 0.0 0.0 
m33 0.0 0.0 
Thermal conductivity    
λ1=λ2=λ3 (W m-1 K-1) 2.5 3.2 

 
Validation of the present formulation   

The electro-magneto-elastic strip is degenerated 
to a single piezoelectric (BaTiO3) layer. The present 
formulation is validated with a mechanical and thermal 
loading condition. First, mechanical and thermal loading 
conditions are evaluated and compared with the 
commercial finite element package ANSYS. Figure 4 & 
5 shows the displacement due to the mechanical and 
thermal load vector and electric potential obtained by the 
present formulation is compared using ANSYS. 
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Fig.4: Variation of displacement piezothermoelastic strip 

subjected to fixed – fixed boundary condition 
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Fig.5: Variation of electrical potential piezothermoelastic 

strip subjected to fixed – fixed boundary condition 
 
Mechanical loading    
Fixed – free end boundary condition    

In the present analysis, mechanical force F is 
assumed to be 2000 N acting on X3 downward direction. 
Fig. 6&7 shows the compare the displacement along 
length and thickness direction for B/B/B, B/F/B and 
F/B/F stacking sequences and also Fig. 8 & 9 shows the 
comparison of electrical potential along thickness 
direction for B/F/B and F/B/F stacking sequence. 
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Fig.6: Compare the displacement along length direction for 

B/B/B, B/F/B and F/B/F stacking sequence 
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Fig.7: Compare the displacement along thickness direction 

for B/B/B, B/F/B and F/B/F stacking sequence 
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Fig.8: Compare the electrical potential along thickness 

direction for B/F/B and F/B/F stacking sequence 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

1 2 3 4 5 6 7
-1.6
-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0  BFB

 FBF

M
ag

ne
tic

 p
ot

en
tia

l

Thickness(m)  
Fig.9: Compare the magnetic potential along thickness 

direction for B/F/B and F/B/F stacking sequence 
 
Thermal loading    
Fixed – fixed boundary condition    

In the present analysis, the uniform temperature 
difference θ is assumed to 50oC.  Fig. 10: shows the 
compare the displacement in thickness direction for 
B/B/B, B/F/B and F/B/F stacking sequences and also Fig. 
11 & 12 shows the compare the electrical potential and 
magnetic induction along thickness direction for B/F/B 
and F/B/F stacking sequence.  
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Fig.10: Compare the displacement along thickness direction 

for B/B/B, B/F/B and F/B/F stacking sequence 
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Fig.11: Compare the electrical potential along thickness 
direction for B/F/B and F/B/F stacking sequence 
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Fig.12: Compare the magnetic potential along thickness 

direction for B/F/B and F/B/F stacking sequence 
 
Conclusions  

In this study, the finite element procedure is 
used to investigate a three-layered electro-magneto-
thermo-elastic strip along the thickness direction in 
mechanical and thermal loading conditions. As an 
illustration, we carried out calculations for a three 
layered composite strip composed of 
piezoelectric/piezomagnetic behaviors in the static study 
for mechanical load and temperature change, 
displacement, electrical potential and magnetic potential 
distributions. Furthermore, we have investigated the 
influence of pyroelectric/pyromagentic effect on 
displacement, electrical and magnetic potential. This 
study is considered to be useful in the design of magneto-
electro-elastic sensors/actuators for smart structure 
application in the various mechanical and thermal 
loading conditions   
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